Electron Beam Mask Writer EBM-9500PLUS for logic 7nm+ node generation

Hideki Matsui*, Kota Iwasaki, Noriaki Nakayamada, Takashi Kamikubo, Keita Ideno, Michihiro Kawaguchi, Kiyoshi Nakaso, Takahito Nakayama, Takanao Touya, Taku Yamada, Toru Hinata and Kenji Ohtoshi.

NuFlare Technology, Inc., 8-1 Shinsugita, Isogo, Yokohama, Kanagawa 235-8522, Japan

NuFlare's EB mask writer roadmap

> Full production lineup is ready for sales.

Charging Effect Reduction (CER)

- > CER technology was developed for EBM-9500PLUS.

 - H/W modification : To reduce fogging charging
 New CEC model : To compensate re-entering low-energy secondary electron charging

CER achieves image placement performance equivalent to CDL results.

Local CD accuracy

- Evaluation by 120nm width space in local area on mask.
- Line: measurement between exposed lines.
- Space: measurement on exposed line.
- Achieved EBM-9500PLUS standard specification, (1.3[nm])

Motivation for development

- > Target technology Node: 7 nm+
- > Key development: Improvement of Image Placement error

	EBM-8000P/M	EBM-8000P/H	EBM-9000	EBM-9500	EBM- 9500PLUS
Technology node	45-20nm	14/16nm	10nm	7nm	7nm+
Current density [A/cm ²] (Total current[nA])	400 (1000)	400 (490)	800 (500)	1200 (750)	1200 (750)
Max shot size [nm]	500	350	250	250	250
LCD* [3 ₀]	2.5nm	1.3nm	1.3nm	1.3nm	1.3nm
IP [3 ₀]	6nm	4.3nm	3.0nm	2.1nm	1.8nm**
Writing time[H]***	12.0	12.0	6.5	6.0	6.0

Global image placement with low-density layout

> Achieved EBM-9500PLUS standard specification. (1.8[nm])

Patterning resolution

> Less than 30[nm] were resolved.

Problem statement for Image Placement error

- Resist charging is dominant error source for image placement error.
- NuFlare's mask writer use Charging Effect Correction (CEC) S/W to compensate resist charging error.
 - Correction residual error is error source for position accuracy.
 (Especially for complex patterns)
- Components of resist surface charging
 - > Direct charging

 - Fogging charging
 Re-entering low-energy secondary electron charging

Global position with high-density layout

- > 4 different density pads are placed in global.
- Achieved EBM-9500PLUS standard specification (1.8[nm])

Conclusion

- > We developed EBM-9500PLUS for 7nm+ tn generation.
 - > Charging Effect Reduction (CER) technology is newly introduced to improve Image Placement error with high-density layouts.
 - > CER achieves image placement performance equivalent to CDL performance.
- Nuflare confirmed performance of EBM-9500PLUS.
- > EBM-9500PLUS meets standard specification.
 - > Local CD : 1.3[nm]
 - > Global IP with high-density layouts: 1.8[nm]
- > Released for sale on Oct, 2018.

NuFlare Technology,Inc.